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Abstract

Estrogen receptor (ER) positive patient–derived xenograft
(PDX) models of breast cancer are important translational
tools in our pursuit for a better understanding of treatment
resistance and for the preclinical evaluation of novel therapies.
PDX modelling of ER+ breast cancer is traditionally associated
with caveats such as low engraftment rates and absence of an
immune microenvironment, leading to a paucity of ER+ models
and an inability to assess immune-related effects. Further-
more, with the increased demand for modelling of therapy-
resistant metastatic ER+ disease, our approach to propagating
these models needs to evolve to ensure accurate recapitula-
tion of the clinical features observed in patients with treatment-
resistant breast cancer. In this review, we discuss recent major
advancements in this field and the increasing utility of these
models for high throughput screening of novel therapeutics.
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Introduction
Patient-derived xenografts (PDX) are now widely
used as an important preclinical tool in oncology to
further our understanding of tumour biology across a
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range of malignancies. They are established through

the implantation of patient tumour tissue into an
immunodeficient murine host and have been shown
to preserve the proteomic, transcriptomic and
genomic features of the donor tissue and to recapit-
ulate patients’ response to therapy [1,2]. As PDX use
becomes increasingly widespread, guidelines have
been established for a minimum data set required for
characterisation of PDX models [3,4]. These guide-
lines recommend the inclusion of essential and
desirable information, which will foster consistency in
the reporting of PDX models. Additionally, they allow

for clarity of interpreting the significance of results
achieved with these models. Essential information
includes the details about source of the tissue, such as
gender, age and diagnosis, clinical information such as
whether it is a primary or metastatic sample and
desirable information pertaining to the patient treat-
ment history and the response of the PDX to
standard-of-care therapies.

Breast cancer PDX models are routinely propagated
in the mouse mammary fat pad and have enhanced

our understanding of breast cancer biology pertain-
ing to intra-tumoral heterogeneity and changes in
clonality following therapy [5e7], as well as in the
preclinical evaluation of novel targeted therapies
[8e10]. The success of developing breast cancer
PDX models in the mammary fat pad is subtype-
dependent and favours tumours with basal differ-
entiation and a higher proliferation rate such as
triple negative breast cancer (TNBC) [11,12].
Hence, whilst estrogen receptor positive (ERþ)
breast cancer is the most common breast cancer

subtype, accounting for over 70% of cases, there is a
relative scarcity of these PDX models available for
research. By improving the relatively low take-rate,
optimising the approach to propagate ERþ breast
cancer PDXs, including therapy-resistant disease,
and establishing these in an immune competent
environment, the clinical utility of these valuable
resources could be further enhanced. This review
focusses on recent technical developments
(Figure 1) to improve the establishment and utility
of ERþ PDX models for translation research.
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Figure 1

Summary of technical developments in the establishment of ER+ PDX tumours. Technical improvements include orthotopic implantation of metastatic
tissues, no requirement for estradiol supplementation, mammary intraductal injection of epithelial cells and humanization of the immune system of the
murine NSG hosts via transplantation with peripheral blood mononuclear cells (PBMCs) or CD34+ haematopoietic stem cells.
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Mammary intraductal (MIND) tumour
implantation
Human breast cancer xenografts have traditionally been
established by injecting human breast cancer cells
embedded in Matrigel into the murine mammary fat
pad. Engraftment can also be achieved via injection of
breast cancer cells into the mammary milk ducts, which
may provide a micro-environment more conducive to
preserving the biology and natural history of ERþ
models [13,14]. A landmark study demonstrated that
injection of ERþ MCF7 cells into the mammary fat
padeinduced basal differentiation of the cancer cells as
a result of increased TGFb/SLUG signalling, and
resulted in highly proliferative ERþ xenografts with
lower expression of steroid hormone receptors such as
ER and the androgen receptor (AR) [15]. This shift
towards a more proliferative phenotype in ERþ tumours
is supported by reports that most ERþ PDX tumours
are classed as the more proliferative luminal B subtype
at the transcriptomic level, even when the matching

patient tissues implanted were of the less proliferative
luminal A subtype [16]. In contrast, SLUG signalling
was suppressed when these cells were injected into the
mammary milk ducts. This resulted in the development
of ERþ MCF7 mammary intraductal (MIND) tumours,
Current Opinion in Endocrine and Metabolic Research 2020, 15:31–36
which maintained a luminal A phenotype characterised
by higher expression of steroid receptors and a lower
proliferation index [15]. Furthermore, these MIND tu-
mours responded to endocrine therapy and, unlike most

mammary fat pad implanted tumours, did not require
exogenous estradiol supplementation to grow, hence
avoiding the issue of estradiol-induced toxicity [17].

The applicability of this intraductal approach was eval-
uated using patient-derived ERþ breast cancer samples
and the resultant MIND ERþ PDX models were found
to harbour similar histopathological and therapeutic
response characteristics to the patient from which it was
derived from [18,19]. A challenge with the use of
MIND, particularly for experiments in which tumour

growth kinetics are an endpoint, is the difficulty in
obtaining accurate tumour measurements. MIND tu-
mours do not grow in the typical spherical fashion of
traditional fat pad xenografts, which are amenable to
manual measurement using callipers. Further manipu-
lation of the models to transduce a luminescent marker
prior to implantation is required to infer MIND tumour
volume changes using a bioluminescent in vivo imaging
system [15,19].
www.sciencedirect.com
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Establishment of therapy-resistant ER+
PDX models
Most PDX models of therapy-resistant ERþ breast
cancer are established from patients who have
progressed on therapy, often from biopsies from meta-
static sites or from residual primary tumour following
neoadjuvant systemic therapy, or following chronic
exposure to therapy in the animals. In the context of
ERþ breast cancer, mutations in ESR1 (e.g. Y537S and
D538G) have emerged as one of the most prevalent
mechanisms of endocrine resistance, and can be found
in up to 40% of patients with ERþ breast cancer who
had progressed on aromatase inhibitor therapy [20e22].
ER signalling is altered in the endocrine-resistant
context including those harbouring ESR1 mutations
[23,24]. Due to the diversity of mechanisms of endo-
crine resistance, it is critical that the underlying drivers
are identified in each model through in-depth genomic,
transcriptomic and proteomic characterisation of the
tumour, and these mechanisms of resistance can be used
as biomarkers of response to novel targeted therapies
[25]. Importantly, one cannot assume that PDX models
will always recapitulate the therapy response of the
patient in which it was derived from, and it is important

to validate this in vivo as part of the characterization of
the PDX model. The patient treatment history and
PDX model’s response to therapy should be included in
the minimal information provided when using ERþ
PDX models [4].

An important consideration in the establishment and
propagation of endocrine-resistant ERþ PDX models is
whether estradiol supplementation should be routinely
used. Estradiol has been shown to have a paradoxical
growth suppressive effect on some endocrine-resistant

models [16,26,27]. Furthermore, ESR1 mutations
result in the constitutive activation of ER in a ligand-
independent manner consistent with the ability of
ERþ tumour cells harbouring these mutations to
circumvent oestradiol-deprived conditions [28]. Estra-
diol supplementation in this context may potentially
reactivate classical ER signalling-dependent prolifera-
tion and render these models biologically more similar to
treatment-naive ERþ breast cancers [17,24]. Thus, it is
critical to evaluate these models in the presence and
absence of estradiol to more accurately determine the

growth conditions of the tumour at baseline prior to
using these models to evaluate the effects of novel
therapies [8,10].
Orthotopic versus ectopic implantation of
metastatic tissues
Another important consideration in the establishment of
PDX models is the origin of the tissue from which the
tumour was derived. This is particularly relevant in the
study of metastatic disease which is the main cause of
breast cancererelated mortality. In contrast to PDX
www.sciencedirect.com Cu
models from primary breast cancer which are implanted
orthotopically into the mammary fat pad, metastatic
tissues are routinely implanted ectopically into the fat
pad or subcutaneously. In one study, transcriptomic an-
alyses revealed that organ-matched orthotopic PDX
tumours were more similar to the donor tissue than
mammary fat pad implanted metastatic tumours [29]. In
addition, there were differences noted between the

chemotherapy sensitivity in mammary gland implanted
PDX tumours compared to the matching orthotopic
brain implanted tumours. These observations support
the hypothesis that the metastatic niche is important for
the establishment, growth and therapeutic response of
disseminated cancer cells [30]. These are important
considerations in PDX models derived from metastatic
sites when interpreting inferences regarding their
biology and therapeutic response. A major limitation of
this technique is the technical complexity in engrafting
in vital organs such as the brain, liver, lung and bone, and

the limited ability to measure tumour responses in these
internal organs in the mouse without advanced imaging
techniques. Thus, this approach is still limited in its
utility at this current time.
Utility of PDX models for drug screening
High husbandry costs, particularly in the context of
ERþ breast cancer where many models grow relatively
slowly and mice must be maintained for long periods,
have limited the number of biological replicates used in
experiments designed for preclinical evaluation of
therapies. The number of models tested must be
balanced against the number of technical replicates
(i.e. mice) required per treatment arm for statistical
robustness, and the number of treatment arms to be
studied. There have been efforts made to reconsider
this approach in order to increase the scalability and

decrease the associated costs of including a wider bio-
logical diversity in therapeutic studies. The 1 � 1 � 1
experimental design is an approach whereby drug
screening of therapeutics is carried out in a panel of
well-characterized PDX models with each model
implanted into a single mouse. This approach sacrifices
technical replicates for biological replicates and derives
statistical power from the population response [31]. In
the largest study of this kind, response to therapeutics
of 29e45 different PDX models of several tumour
types were studied. The authors identified novel syn-

ergistic drug combinations as well as novel gene mu-
tations which can confer resistance to these therapies
[31]. Given that this screening method recapitulates
clinical scenarios i.e. each PDX model represents a
single data point as each patient in a trial represents a
single data point, it is proposed that this high
throughput approach of therapeutic screening would
improve the ability of preclinical studies to predict
clinical response in patients. However, this approach
relies upon economies of scale and requires a large
rrent Opinion in Endocrine and Metabolic Research 2020, 15:31–36
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library of well-characterized PDX models. As such,
apart from well-resourced pharmaceutical companies,
the high cost of establishing such an infrastructure is
likely to render this approach out of reach for most
academic investigators.

A more economical approach may be to perform thera-
peutic screening on organoids [32] or short-term pa-

tient-derived tumour cell cultures derived from PDX
tumours [1], where PDXs serve as intermediate hosts to
expand limited patient-derived tissue. These ex vivo
resources can be set up after digestion of the PDX tu-
mours into either organoids [32] or single cells [1] using
commonly available reagents. Importantly, the response
of the organoids or explants to therapeutics has been
shown to mimic the response of tumours in vivo in both
these studies, representing a cost-effective strategy to
select candidate drugs from a larger library for subse-
quent in vivo evaluation.
Overcoming limitations of immunodeficient
murine hosts
Immunodeficient murine hosts such as the NOD/SCID
and NOD/SCID/Gamma (NSG) mice have been used

for the development of breast PDX models [33e35].
NOD/SCID and NSG mice are deficient in immune
functions pertaining to macrophages, dendritic cells, T
cells and B cells, with NSG mice further impaired in
natural killer cell functions. A major caveat of using
immunodeficient murine models is the inability to
assess the effect of therapy on the immune system and
the effects of immunotherapy, which has shown promise
in the treatment of TNBC [36]. The lack of immune
cells in these murine models can now be overcome by
using human immune progenitor cells to reconstitute an
immune system in the mouse leading to the establish-

ment of humanised mouse hosts. This can be achieved
by transplantation, via tail vein injection, of peripheral
blood mononuclear cells (PBMCs) obtained from pa-
tient donors [37] or CD34þ haematopoietic progenitor
cells isolated from cord blood, human liver or thymus
[38e41]. Immune reconstitution with PBMCs results in
the reconstitution of T lymphocytes, B lymphocytes,
monocytes and natural killer cells, while transplantation
with CD34þ haematopoietic stem cells reconstitutes T
and B lymphocytes. A major limitation with PBMC
transplantation is the acute onset (4e6 weeks) of graft-

versus-host disease (GVHD), whereby the human
lymphocytes target host organs due to recognition of the
murine major histocompatibility complexes (MHC) I
and II. This terminal development limits the thera-
peutic window for studies with these models [42], and a
challenge in ERþ PDXs which typically take a longer
time to grow. More recently, an NSG mouse model
deficient in MHC Class I and II expression has been
developed to overcome GVHD, and may become the
mouse recipient model of choice for PBMC
Current Opinion in Endocrine and Metabolic Research 2020, 15:31–36
reconstitution [43]. In contrast, GVHD is rarely
observed up to 6 months post engraftment in CD34þ
haematopoietic stem cell (HSC) transplantation [44],
and has been used to assess therapies that act through
immune mechanisms such as inhibitors of PD-1
(Pembrolizumab), PD-L1 (Nivolumab) and CTLA-4
(ipilimumab) in TNBC PDX and cell line xenograft
models [38e40].

The interaction between immune and cancer cells is an
emerging area of investigation in ERþ breast cancer
[45,46]. The evaluation of immunotherapy in ERþ
breast cancer is currently lagging behind other types of
cancer and its efficacy is still not clear [47]. CDK4/6
inhibitors, which are the new standard-of-care therapies
in ERþ metastatic breast cancer [48,49], have been
reported to induce Tcell activation in murine syngeneic
models, highlighting the importance of studying
immune responses with these therapies [50,51]. A

humanised immune system is a promising development
in the field of PDX modelling, as it provides an oppor-
tunity to evaluate immunotherapy preclinically in breast
cancer PDX models. This strategy has yet to be
deployed on ERþ PDX models, and with their inherent
slower growth rates will necessitate feasibility studies to
assess if the growth of ERþ tumours in this humanised
environment allows for therapeutic interventions before
the onset of GVHD.
Conclusion
PDX models are currently considered the gold-standard
of preclinical modelling. Early work demonstrating how
closely PDX models recapitulated clinical scenarios
when compared to in vitro or cell line xenograft models
secured their place as the final gateway to translation of
preclinical findings. However, as the use of PDX

models has become increasingly widespread, our un-
derstanding of cancer and the sophistication of the
questions that we use PDX models to answer has
similarly increased, particularly in regard to the
contribution and targeting of the microenvironment
and the development of resistance to standard-of-care
therapies. It has become increasingly apparent that
our approach to modelling needs to evolve with our
understanding of tumour biology, including the tumour
environmental niche. This has brought many chal-
lenges. Some are common to all PDXs, such as the

contribution of the immune system, whilst others are
specific to particular tumour types. In terms of
modelling ERþ breast cancer, key challenges include
improving the take-rate of ERþ models; the apposite-
ness of fat pad implantation and the use of exogenous
estradiol in the establishment of endocrine-resistant
PDX models. In addition, the reconciliation of rela-
tively low growth rates with the cost of husbandry for
large experiments of sufficient biological diversity to
accurately inform clinical trials remains a challenge.
www.sciencedirect.com
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Continuing work is addressing each of these challenges
and new methods and techniques continue to further
improve the recapitulation of clinical scenarios across a
range of increasingly complex metrics encompassing
tumour growth; transcriptional, proteomic and epige-
netic responses; and the contribution of the tumour
microenvironment. The incorporation of high
throughput ex vivo and in vivo drug screen methods will

allow us to capture a wider range of ERþ models with
different therapy resistance mechanisms and greatly
improve the repertoire of therapies that can be
evaluated.

The role of PDX models in preclinical oncology research
continues to develop. Ongoing efforts to further finesse
the clinical accuracy of the models and the development
of minimal reporting standards (which will in turn need
to evolve as modelling becomes more sophisticated) will
only increase the utility of these models and cement

their place as critical pre-requisites for drug
development.
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